A 4 kg mass is suspended as shown in the figure. All pulleys are frictionless and spring constant \( K \) is \( 8 \times 10^3 \) Nm\(^{-1}\). The extension in spring is ( \( g = 10 \) ms\(^{-2}\) )
A 3 kg block is connected as shown in the figure. Spring constants of two springs \( K_1 \) and \( K_2 \) are 50 Nm\(^{-1}\) and 150 Nm\(^{-1}\) respectively. The block is released from rest with the springs unstretched. The acceleration of the block in its lowest position is ( \( g = 10 \) ms\(^{-2}\) )
A full wave rectifier circuit with diodes (\(D_1\)) and (\(D_2\)) is shown in the figure. If input supply voltage \(V_{in} = 220 \sin(100 \pi t)\) volt, then at \(t = 15\) msec:
Consider a water tank shown in the figure. It has one wall at \(x = L\) and can be taken to be very wide in the z direction. When filled with a liquid of surface tension \(S\) and density \( \rho \), the liquid surface makes angle \( \theta_0 \) (\( \theta_0 < < 1 \)) with the x-axis at \(x = L\). If \(y(x)\) is the height of the surface then the equation for \(y(x)\) is: (take \(g\) as the acceleration due to gravity)
Hooke’s Law states that for small deformities, the stress and strain are proportional to each other. Thus,
Stress ∝ Strain
Stress = k × Strain … where k is the Modulus of Elasticity.
When a limited amount of Force or deformation is involved then concept of Hooke’s Law is only applicable . If we consider the fact, then we can deviate from Hooke's Law. This is because of their extreme Elastic limits.