Step 1: Understanding the Concept:
This problem involves a two-dimensional elastic collision. For any collision, linear momentum is conserved. For an elastic collision, kinetic energy is also conserved. The problem states that the initial velocities are perpendicular to each other, and the final velocities are also perpendicular to each other.
Step 2: Key Formula or Approach:
1. Conservation of Linear Momentum (Vector): \(\mathbf{P}_{\text{initial}} = \mathbf{P}_{\text{final}}\) \(\implies\) \(m_1\mathbf{v}_1 + m_2\mathbf{v}_2 = m_1\mathbf{v}'_1 + m_2\mathbf{v}'_2\).
2. Conservation of Kinetic Energy (Scalar): \(K_{\text{initial}} = K_{\text{final}}\) \(\implies\) \(\frac{1}{2}m_1 v_1^2 + \frac{1}{2}m_2 v_2^2 = \frac{1}{2}m_1 (v'_1)^2 + \frac{1}{2}m_2 (v'_2)^2\).
3. Perpendicularity Conditions: \(\mathbf{v}_1 \cdot \mathbf{v}_2 = 0\) and \(\mathbf{v}'_1 \cdot \mathbf{v}'_2 = 0\).
Step 3: Detailed Explanation:
From the conservation of linear momentum, we can square the vector equation:
\[ (m_1\mathbf{v}_1 + m_2\mathbf{v}_2) \cdot (m_1\mathbf{v}_1 + m_2\mathbf{v}_2) = (m_1\mathbf{v}'_1 + m_2\mathbf{v}'_2) \cdot (m_1\mathbf{v}'_1 + m_2\mathbf{v}'_2) \]
Expanding this using the distributive property of the dot product:
\[ m_1^2 v_1^2 + m_2^2 v_2^2 + 2m_1m_2(\mathbf{v}_1 \cdot \mathbf{v}_2) = m_1^2 (v'_1)^2 + m_2^2 (v'_2)^2 + 2m_1m_2(\mathbf{v}'_1 \cdot \mathbf{v}'_2) \]
Using the perpendicularity conditions (\(\mathbf{v}_1 \cdot \mathbf{v}_2 = 0\) and \(\mathbf{v}'_1 \cdot \mathbf{v}'_2 = 0\)), this simplifies to:
\[ m_1^2 v_1^2 + m_2^2 v_2^2 = m_1^2 (v'_1)^2 + m_2^2 (v'_2)^2 \quad \text{(Equation 1)} \]
The conservation of kinetic energy equation is:
\[ m_1 v_1^2 + m_2 v_2^2 = m_1 (v'_1)^2 + m_2 (v'_2)^2 \quad \text{(Equation 2)} \]
We now have a system of two equations. Let's rearrange Equation 2:
\[ m_1(v_1^2 - (v'_1)^2) = m_2((v'_2)^2 - v_2^2) \quad \text{(Equation 3)} \]
And rearrange Equation 1:
\[ m_1^2(v_1^2 - (v'_1)^2) = m_2^2((v'_2)^2 - v_2^2) \quad \text{(Equation 4)} \]
Let \(X = v_1^2 - (v'_1)^2\) and \(Y = (v'_2)^2 - v_2^2\). The equations become:
\(m_1 X = m_2 Y\) and \(m_1^2 X = m_2^2 Y\).
Substituting \(Y = \frac{m_1}{m_2}X\) into the second equation gives:
\[ m_1^2 X = m_2^2 \left(\frac{m_1}{m_2}X\right) \implies m_1^2 X = m_1 m_2 X \]
\[ (m_1^2 - m_1 m_2)X = 0 \implies m_1(m_1 - m_2)X = 0 \]
This implies that either \(m_1=m_2\) or \(X=0\).
If \(X = v_1^2 - (v'_1)^2 = 0\), then \(v_1 = v'_1\).