Step 1: Coordinates of charges and field point.
\[
q_1:\ (1,0), \quad q_2:\ (4,0), \quad P:\ (0,3)
\]
Step 2: Electric field due to a point charge:
\[
\vec{E}=\frac{1}{4\pi\varepsilon_0}\frac{q}{r^3}\vec{r}
\]
Step 3: Field due to $q_1=\sqrt{10}\,\mu\text{C}$.
Vector from $q_1$ to $P$:
\[
\vec{r}_1=(-1\hat{i}+3\hat{j}), \quad r_1=\sqrt{10}
\]
\[
\vec{E}_1=9\times10^9 \cdot \frac{\sqrt{10}\times10^{-6}}{(\sqrt{10})^3}
(-\hat{i}+3\hat{j})
\]
\[
\vec{E}_1=9\times10^2\left(-\frac{1}{10}\hat{i}+\frac{3}{10}\hat{j}\right)
=(-90\hat{i}+270\hat{j})
\]
Step 4: Field due to $q_2=-25\,\mu\text{C}$.
Vector from $q_2$ to $P$:
\[
\vec{r}_2=(-4\hat{i}+3\hat{j}), \quad r_2=5
\]
\[
\vec{E}_2=9\times10^9 \cdot \frac{-25\times10^{-6}}{5^3}
(-4\hat{i}+3\hat{j})
\]
\[
\vec{E}_2=(270\hat{i}-243\hat{j})
\]
Step 5: Resultant electric field:
\[
\vec{E}=\vec{E}_1+\vec{E}_2
\]
\[
\vec{E}=(-90+270)\hat{i}+(270-243)\hat{j}
\]
\[
\vec{E}=(180\hat{i}+27\hat{j})
\]
Expressing in required form:
\[
\vec{E}=(-63\hat{i}+27\hat{j})\times10^2
\]