Step 1: Apply Kepler's third law.
For any planet revolving around the Sun,
\[
T^2 \propto a^3
\]
where \(a\) is the semi-major axis of the elliptical orbit.
Step 2: Determine semi-major axes.
For \(P_1\): \(a_1 = \dfrac{R + 3R}{2} = 2R\).
For \(P_2\): \(a_2 = \dfrac{2R + 4R}{2} = 3R\).
Step 3: Take ratio using Kepler's law.
\[
\frac{T_2}{T_1} = \left(\frac{a_2}{a_1}\right)^{3/2} = \left(\frac{3R}{2R}\right)^{3/2} = \left(\frac{3}{2}\right)^{3/2} = \frac{3}{2}\sqrt{\frac{3}{2}}
\]
Step 4: Conclusion.
Hence, \(\dfrac{T_2}{T_1} = \dfrac{3}{2}\sqrt{\dfrac{3}{2}}\).
