Step 1: Convert base-$B$ numbers to decimal.
\[
297_B = 2B^2 + 9B + 7, \qquad 792_B = 7B^2 + 9B + 2.
\]
Step 2: Condition for divisibility.
We require:
\[
297_B \mid 792_B ⇒ (2B^2+9B+7) \mid (7B^2+9B+2).
\]
Step 3: Try answer choices.
\underline{$B=11$:}
$297_{11}=2(121)+99+7=348$, $792_{11}=847$. $847/348$ is not integer.
\underline{$B=12$:}
$297_{12}=2(144)+108+7=403$, $792_{12}=1186$. $1186/403$ not integer.
\underline{$B=15$:}
$297_{15}=2(225)+135+7=592$, $792_{15}=1612$. $1612/592$ not integer.
\underline{$B=17$:}
$297_{17}=2(289)+153+7=738$, $792_{17}=2080$. $2080/738$ not integer.
\underline{$B=19$:}
$297_{19}=2(361)+171+7=900$, $792_{19}=2542$. $2542/900$ not integer. Wait check carefully.
Step 4: Re-check calculation for $B=19$.
\[
297_{19}=2(361)+9(19)+7=722+171+7=900,
\]
\[
792_{19}=7(361)+9(19)+2=2527+171+2=2700.
\]
Now $2700/900=3$, an integer.
\[
\boxed{19}
\]