Step 1: Mutual inductance. \(M=k\sqrt{L_1L_2}=0.6\sqrt{4\times 5}=2.6833~\text{H}\).
Step 2: Peak currents. Since the sinusoids are in phase, \(I_{1,\text{pk}}=1~\text{mA}=1\times10^{-3}\text{ A}\), \(I_{2,\text{pk}}=2~\text{mA}=2\times10^{-3}\text{ A}\).
Step 3: Peak energy (aiding polarity).
\[
W_{\max}=\tfrac12 L_1 I_1^2+\tfrac12 L_2 I_2^2+M I_1 I_2
=\tfrac12(4)(10^{-3})^2+\tfrac12(5)(2\!\times\!10^{-3})^2
+2.6833(10^{-3})(2\!\times\!10^{-3})
\]
\[
=2.0\times10^{-6}+1.0\times10^{-5}+5.3666\times10^{-6}
=1.7367\times10^{-5}\text{ J}=17.37~\mu\text{J}.
\]
Final Answer: 17.37 \(\mu\)J