Two designs A and B, shown in the figure, are proposed for a thin-walled closed section that is expected to carry only torque. Both A and B have a semi-circular nose, and are made of the same material with a wall thickness of 1 mm. With strength as the only criterion for failure, the ratio of maximum torque that B can support to the maximum torque that A can support is ________ (rounded off to two decimal places).
At a given frequency, the storage modulus \( G' \) and loss modulus \( G'' \) of four biomaterials are shown in the table below. Which of the following option(s) is/are CORRECT?
A 1 m long rod of 1 cm × 1 cm cross section is subjected to an axial tensile force of 35 kN. The Young’s modulus of the material is 70 GPa. The cross-section of the deformed rod is 0.998 cm × 0.998 cm. The Poisson’s ratio of the material is __________ (rounded off to one decimal place).
A 1 m long rod is to be designed to support an axial tensile load \( P \) (\( P >> \) weight of the rod). The material for the rod is to be chosen from one of the four provided in the table. Using strength-based failure criterion for design, which material results in the lowest weight of the rod?
Given Properties Properties:
For a homogeneous, isotropic material, the relation between the shear modulus (\( G \)), Young’s modulus (\( E \)), and Poisson’s ratio (\( \nu \)) is ________?
A single-stage axial compressor, with a 50 % degree of reaction, runs at a mean blade speed of 250 m/s. The overall pressure ratio developed is 1.3. Inlet pressure and temperature are 1 bar and 300 K, respectively. Axial velocity is 200 m/s. Specific heat at constant pressure, \( C_p = 1005 \, {J/kg/K} \) and specific heat ratio, \( \gamma = 1.4 \). The rotor blade angle at the outlet is __________ degrees (rounded off to two decimal places).
An ideal ramjet with an optimally expanded exhaust is travelling at Mach 3. The ambient temperature and pressure are 260 K and 60 kPa, respectively. The inlet air mass flow rate is 50 kg/s. Exit temperature of the exhaust gases is 700 K. Fuel mass flow rate is negligible compared to air mass flow rate. Gas constant is \( R = 287 \, {J/kg/K} \), and specific heat ratio is \( \gamma = 1.4 \). The thrust generated by the engine is __________ kN (rounded off to one decimal place).
A monopropellant liquid rocket engine has 800 injectors of diameter 4 mm each, and with a discharge coefficient of 0.65. The liquid propellant of density 1000 kg/m³ flows through the injectors. There is a pressure difference of 10 bar across the injectors. The specific impulse of the rocket is 1500 m/s. The thrust generated by the rocket is __________ kN (rounded off to one decimal place).
Air at temperature 300 K is compressed isentropically from a pressure of 1 bar to 10 bar in a compressor. Eighty percent of the compressed air is supplied to a combustor. In the combustor, 0.88 MJ of heat is added per kg of air. The specific heat at constant pressure is \( C_p = 1005 \, {J/kg/K} \) and the specific heat ratio is \( \gamma = 1.4 \). The temperature of the air leaving the combustor is _______ K (rounded off to one decimal place).
An ideal turbofan with a bypass ratio of 5 has core mass flow rate, \( \dot{m}_a,c = 100 \, {kg/s} \). The core and the fan exhausts are separate and optimally expanded. The core exhaust speed is 600 m/s and the fan exhaust speed is 120 m/s. If the fuel mass flow rate is negligible in comparison to \( \dot{m}_a,c \), the static specific thrust (\( \frac{T}{\dot{m}_a,c} \)) developed by the engine is _________ Ns/kg (rounded off to the nearest integer).