Step 1: Electrostatic Potential Energy Formula
The electrostatic potential energy \( U \) of a system of two point charges is given by:
\[
U = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}
\]
where:
- \( q_1 = 5 \times 10^{-9} \) C,
- \( q_2 = -2 \times 10^{-9} \) C,
- \( r \) is the distance between charges, given as \( r = 23 - 5 = 18 \) cm \( = 0.18 \) m,
- \( \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \) N·m\(^2\)/C\(^2\).
Step 2: Substituting the Values
\[
U = \left(9 \times 10^9\right) \times \frac{(5 \times 10^{-9}) \times (-2 \times 10^{-9})}{0.18}
\]
\[
U = \left(9 \times 10^9\right) \times \frac{-10 \times 10^{-18}}{0.18}
\]
\[
U = \frac{-90 \times 10^{-9}}{0.18}
\]
\[
U = -5 \times 10^{-7} \text{ J}
\]
Step 3: Conclusion
Since electrostatic potential energy can be negative due to opposite charges, the magnitude of energy is \( 5 \times 10^{-7} \) J.