Top measures of a table are 3m and 1m 75 cm respectively. Its area in square meters is
Show Hint
- Area of a rectangle = Length \( \times \) Width.
- Ensure all dimensions are in the same unit before calculating the area. If the desired area unit is m\(^2\), convert all lengths to meters.
- Conversions: 1 m = 100 cm. So, \( x \text{ cm} = x/100 \text{ m} \).
Step 1: Identify the dimensions of the table top.
The "top measures" likely refer to the length and width of a rectangular table.
Length \( L = 3 \) m.
Width \( W = 1 \) m \( 75 \) cm.
Step 2: Convert all dimensions to the same unit (meters) for area calculation in square meters.
Length \( L = 3 \) m.
Width \( W \):
\( 75 \text{ cm} = \frac{75}{100} \text{ m} = 0. 75 \text{ m} \).
So, \( W = 1 \text{ m} + 0. 75 \text{ m} = 1. 75 \text{ m} \).
Step 3: Calculate the area of the rectangular table top.
Area \( A = \text{Length} \times \text{Width} = L \times W \).
\[ A = (3 \text{ m}) \times (1. 75 \text{ m}) \]
\[ A = 3 \times 1. 75 \, \text{m}^2 \]
Calculation:
\( 3 \times 1 = 3 \)
\( 3 \times 0. 75 = 3 \times \frac{3}{4} = \frac{9}{4} = 2. 25 \)
So, \( A = 3 + 2. 25 = 5. 25 \, \text{m}^2 \).
Alternatively, \( 1. 75 \times 3 \):
1. 75
x 3
-----
5. 25
The area is \( 5. 25 \) square meters.
Step 4: Compare with options.
This matches option (3).