
The standard heat of formation, in kcal/mol, of $Ba^{2+}$ is:
Given: Standard heat of formation of SO₄²⁻(aq) = -216 kcal/mol, standard heat of crystallization of BaSO₄(s) = -4.5 kcal/mol, standard heat of formation of BaSO₄(s) = -349 kcal/mol.
At a particular temperature T, Planck's energy density of black body radiation in terms of frequency is \(\rho_T(\nu) = 8 \times 10^{-18} \text{ J/m}^3 \text{ Hz}^{-1}\) at \(\nu = 3 \times 10^{14}\) Hz. Then Planck's energy density \(\rho_T(\lambda)\) at the corresponding wavelength (\(\lambda\)) has the value \rule{1cm}{0.15mm} \(\times 10^2 \text{ J/m}^4\). (in integer)
[Speed of light \(c = 3 \times 10^8\) m/s]
(Note: The unit for \(\rho_T(\nu)\) in the original problem was given as J/m³, which is dimensionally incorrect for a spectral density. The correct unit J/(m³·Hz) or J·s/m³ is used here for the solution.)