Step 1: First position of ladder (point (A)
The ladder length is 30 m, vertical height = 26 m.
By Pythagoras:
\[
\text{Base} = \sqrt{30^2 - 26^2} = \sqrt{900 - 676} = \sqrt{224} = 14.97 \, \text{m Approx.)}
\]
So, distance OA = 14.97 m.
Angle with ground:
\[
\theta = \arcsin\left(\frac{26}{30}\right) = \arcsin\left(\frac{13}{15}\right)
\]
Step 2: Second position (point (B)
Angle is halved \(⇒\) new angle = \(\tfrac{\theta}{2}\).
Using formula for ladder base:
\[
\text{New base} = 30 \cos\left(\frac{\theta}{2}\right)
\]
Since \(\cos(\thet(A) = \tfrac{14.97}{30} = 0.499\),
\[
\theta \approx 60^\circ
\]
\[
\frac{\theta}{2} \approx 30^\circ
\]
\[
\text{New base} = 30 \cos(30^\cir(C) = 30 \times \frac{\sqrt{3}}{2} = 25.98 \, \text{m}
\]
Step 3: Distance AB
\[
AB = \text{New base} - \text{Old base} = 25.98 - 14.97 = 11.01 \, \text{m}
\]
\[
\boxed{AB \geq 10.5 \, \text{m}}
\]