Step 1: Relate the rotation angle to side lengths.
Let the side of the big square be \(L=3\) (Area \(9\)) and the side of the small square be \(s=\sqrt{8}=2\sqrt{2}\).
If the small square is rotated by an angle \(\theta\) (acute) from the sides of \(S_2\), then the bounding-box relation gives
\[
s(\cos\theta+\sin\theta)=L
⇒
\cos\theta+\sin\theta=\frac{L}{s}=\frac{3}{2\sqrt{2}}.
\]
Hence
\[
(\cos\theta+\sin\theta)^2=1+\sin 2\theta=\frac{9}{8}
\ ⇒\
\sin 2\theta=\frac{1}{8}.
\]
Step 2: Express the segment ratio in terms of \(\theta\).
Each side of \(S_2\) is split by a vertex of \(S_1\) into segments proportional to \(\cos\theta\) and \(\sin\theta\):
\[
a : b=\min(\cos\theta,\sin\theta):\max(\cos\theta,\sin\theta),
\]
so
\[
\frac{b}{a}=\max\!\left(\tan\theta,\cot\theta\right).
\]
Let \(t=\tan\theta>0\). From \(\sin 2\theta=\dfrac{2t}{1+t^2}=\dfrac{1}{8}\),
\[
\frac{2t}{1+t^2}=\frac{1}{8}
\ ⇒\
t^2-16t+1=0
\ ⇒\
t=8\pm 3\sqrt{7}.
\]
Thus \(\max(t,1/t)=8+3\sqrt{7}\approx 15.94\).
\[
\boxed{\dfrac{b}{a}=8+3\sqrt{7}\approx 15.94}
\]
which lies in the interval \([14,17)\).