Step 1: Geometry and similar triangles.
Let the centers be $O_1$ (radius $r_1=3$) and $O_2$ (radius $r_2=8$).
$O_1P_1 \perp T$ and $O_2P_2 \perp T$, and $O_1O_2$ meets $T$ at $X$.
In right triangles $\triangle O_1XP_1$ and $\triangle O_2XP_2$, the acute angle at $X$ is common; hence the triangles are similar. Therefore,
\[
\frac{r_1}{O_1X}=\frac{r_2}{O_2X}⇒
O_2X=\frac{r_2}{r_1}\,O_1X=\frac{8}{3} 5=\frac{40}{3}.
\]
Thus the distance between the centers is
\[
d=O_1O_2=O_1X+O_2X=5+\frac{40}{3}=\frac{55}{3}.
\]
Step 2: Length of the internal common tangent $P_1P_2$.
For a common internal tangent,
\[
P_1P_2=\sqrt{\,d^2-(r_1+r_2)^2\,}.
\]
With $d=\dfrac{55}{3}$ and $r_1+r_2=11$,
\[
P_1P_2=\sqrt{\left(\frac{55}{3}\right)^2-11^2}
=\sqrt{\frac{3025-1089}{9}}
=\sqrt{\frac{1936}{9}}
=\frac{44}{3}\approx 14.67.
\]
\[
\boxed{P_1P_2=\dfrac{44}{3}\ \text{units}\ (\approx 14.67)}⇒ \text{falls in }(14,15].
\]