Step 1: Define Venn regions.
Let us denote:
\[
a = \text{FD only}, \quad b = \text{FD $\cap$ BF only}, \quad c = \text{BF only}, \quad d = \text{FD $\cap$ SA only},
\]
\[
e = \text{FD $\cap$ BF $\cap$ SA}, \quad f = \text{BF $\cap$ SA only}, \quad g = \text{SA only}, \quad h = \text{none}.
\]
Step 2: Use given values.
- Students in all three: $e = 4$.
- Total FD students: $48 \Rightarrow a + b + d + e = 48$.
- Total SA students: $124 \Rightarrow d + e + f + g = 124$.
- Students with none: $h = 59$.
Also, given relationships:
- FD $\cap$ SA only = $d = 2b$ and also $d = 4e$. Since $e = 4$, $\Rightarrow d = 16$.
- Condition: FD $\cap$ SA only = BF $\cap$ SA only $\Rightarrow d = f$. So, $f = 16$.
Step 3: Calculate other regions.
From FD total:
\[
a + b + d + e = 48 \quad \Rightarrow \quad a + b + 16 + 4 = 48
\]
\[
a + b = 28
\]
From SA total:
\[
d + e + f + g = 124 \quad \Rightarrow \quad 16 + 4 + 16 + g = 124
\]
\[
g = 88
\]
Step 4: Use total population.
Total students = 240.
So:
\[
a + b + c + d + e + f + g + h = 240
\]
\[
(a+b) + c + 16 + 4 + 16 + 88 + 59 = 240
\]
\[
28 + c + 183 = 240
\]
\[
c = 29
\]
Step 5: Final Answer.
Hence, the number of students who study Behavioural Finance only is:
\[
\boxed{29}
\]