Step 1: Apply Kirchhoff's Voltage Law (KVL).
In this circuit, the voltage across the Zener diode \( V_Z \) is 20 V and the input voltage \( V_{\text{in}} \) is 40 V. The current \( I_Z \) through the Zener diode can be calculated using KVL:
\[
V_{\text{in}} = I_Z R + V_Z
\]
where \( R = 10 \, \text{k}\Omega \) is the resistor in the circuit. Solving for \( I_Z \), we get:
\[
I_Z = \frac{V_{\text{in}} - V_Z}{R} = \frac{40 - 20}{10 \times 10^3} = \frac{20}{10 \times 10^3} = 2 \, \text{mA}
\]
Step 2: Conclusion.
Thus, the Zener current \( I_Z \) is 2.0 mA.