Let the efficiency of a man be \( M \), a woman be \( W \), and a boy be \( B \).
From the problem:
\[
8W = 6M = 12B
\]
Solving, we get:
\[
W = \frac{3}{4}M, \quad B = \frac{1}{2}M
\]
Total work = \( 9M \times 6 \times 6 = 324M \).
New group working 8 hours per day:
\[
12M + 12W + 12B = 12M + 9M + 6M = 27M
\]
Work completed per day:
\[
27M \times 8 = 216M
\]
Total days required:
\[
\frac{324M}{216M} = 1.5 \text{ days} = 1 \frac{1}{2} \text{ days}
\]
Thus, the answer is \( 1 \frac{1}{2} \) days.