Consider a system of three connected strings, $ S_1, S_2 $ and $ S_3 $ with uniform linear mass densities $ \mu \, \text{kg/m}, 4\mu \, \text{kg/m} $ and $ 16\mu \, \text{kg/m} $, respectively, as shown in the figure. $ S_1 $ and $ S_2 $ are connected at point $ P $, whereas $ S_2 $ and $ S_3 $ are connected at the point $ Q $, and the other end of $ S_3 $ is connected to a wall. A wave generator $ O $ is connected to the free end of $ S_1 $. The wave from the generator is represented by $ y = y_0 \cos(\omega t - kx) $ cm, where $ y_0, \omega $ and $ k $ are constants of appropriate dimensions. Which of the following statements is/are correct:
A sub-atomic particle of mass \( 10^{-30} \) kg is moving with a velocity of \( 2.21 \times 10^6 \) m/s. Under the matter wave consideration, the particle will behave closely like (h = \( 6.63 \times 10^{-34} \) J.s)
Waves are a disturbance through which the energy travels from one point to another. Most acquainted are surface waves that tour on the water, but sound, mild, and the movement of subatomic particles all exhibit wavelike properties. inside the most effective waves, the disturbance oscillates periodically (see periodic movement) with a set frequency and wavelength.
Waves in which the medium moves at right angles to the direction of the wave.
Examples of transverse waves:
The high point of a transverse wave is a crest. The low part is a trough.
A longitudinal wave has the movement of the particles in the medium in the same dimension as the direction of movement of the wave.
Examples of longitudinal waves: