The problem involves the relationship between pressure and volume for an air bubble as it rises to the surface of a lake. We can use Boyle's Law, which states that for a constant temperature, the product of pressure and volume remains constant, i.e., \( P_1V_1 = P_2V_2 \). Given:
\( V_2 = 2V_1 \)
Let \( P_1 \) be the pressure at the bottom of the lake and \( P_2 \) be the pressure at the surface.
Atmospheric pressure \( P_2 = 75 \) cm Hg.
Density of mercury \( \rho_{Hg} = 40 \times \) density of water \( \rho_w \).
The pressure at the bottom is the sum of atmospheric pressure and the pressure due to water column:
\( P_1 = P_2 + h \rho_w g \)
Using Boyle’s Law:
\( P_1V_1 = P_2 \cdot 2V_1 \)
Therefore:
\( P_1 = 2P_2 \)
Substitute in the pressure equation:
\( 2P_2 = P_2 + h \rho_w g \)
\( P_2 = h \rho_w g \)
Convert \( P_2 \) from cm of Hg to pascals:
\( P_2 = 75 \) cm Hg \( = 75 \) cm \( \times 1333 \) Pascal/cm (since 1 cm Hg = 1333 Pa)
\( P_2 = 99975 \) Pascal
Using the conversion of mercury to water density:
\( \rho_w = \rho_{Hg} / (40/3) \)
\( \rho_w = 13600 \) kg/m\(^3\) / (40/3)
Calculate pressure in water as \( h \cdot \rho_w \cdot g = P_2 \):
\( \rho_w g = 99975 \) Pascal
Finally, solve for \( h \):
\( h = 99975 \) Pascal \(/ (1000 \times 9.81)\)
\( h \approx 20 \) meters
Thus, the depth of the lake is 20 meters.
Water flows through a horizontal tube as shown in the figure. The difference in height between the water columns in vertical tubes is 5 cm and the area of cross-sections at A and B are 6 cm\(^2\) and 3 cm\(^2\) respectively. The rate of flow will be ______ cm\(^3\)/s. (take g = 10 m/s\(^2\)). 
Consider the following statements: Statement I: \( 5 + 8 = 12 \) or 11 is a prime. Statement II: Sun is a planet or 9 is a prime.
Which of the following is true?
The value of \[ \int \sin(\log x) \, dx + \int \cos(\log x) \, dx \] is equal to
The value of \[ \lim_{x \to \infty} \left( e^x + e^{-x} - e^x \right) \] is equal to