Step 1: Use the Hagen–Poiseuille relation for fully developed laminar flow in a circular tube:
\[
Q \;=\; \frac{\pi\,D^{4}}{128\,\mu\,L}\,\Delta P
\quad\Rightarrow\quad
\mu \;=\; \frac{\pi\,D^{4}\,\Delta P}{128\,L\,Q}.
\]
Step 2: Convert all quantities to SI units and substitute.
\[
D = 0.5\ \text{mm} = 5.0\times 10^{-4}\ \text{m},\quad
L = 1.5\ \text{m},\]
\[Q = 1\ \text{cm}^3\!/\text{s} = 1.0\times 10^{-6}\ \text{m}^3/\text{s},\quad
\Delta P = 1\ \text{MPa} = 1.0\times 10^{6}\ \text{Pa}.
\]
\[
\mu \;=\; \frac{\pi (5.0\times 10^{-4})^{4} (1.0\times 10^{6})}{128\,(1.5)\,(1.0\times 10^{-6})}
\;=\; 1.02265\times 10^{-3}\ \text{Pa}\cdot\text{s}.
\]
Step 3: Express \(\mu\) as \(k\times 10^{-3}\ \text{Pa}\cdot\text{s}\) and round \(k\) to two decimals:
\[
k \;=\; 1.02265 \;\approx\; \boxed{1.02}.
\]