The vectors \(\overrightarrow{AB}=-3\hat{i}+4\hat{k}\) and \(\overrightarrow{AC}=5\hat{i}-2\hat{j}+4\hat{k}\) are the sides of a triangle \(ABC\). The length of the median through \(A\) is
Show Hint
For a triangle with sides \(\vec{AB}\) and \(\vec{AC}\),
the median through vertex \(A\) is:
\[
\vec{AM}=\frac{\vec{AB}+\vec{AC}}{2}
\]
Always find the magnitude of the median vector for its length.
Step 1: The vector representing the median through vertex \(A\) is given by:
\[
\vec{AM}=\frac{1}{2}\left(\vec{AB}+\vec{AC}\right)
\]
Step 2: Write the given vectors in component form:
\[
\vec{AB}=(-3,\,0,\,4), \qquad \vec{AC}=(5,\,-2,\,4)
\]
Step 3: Add the vectors:
\[
\vec{AB}+\vec{AC}=(2,\,-2,\,8)
\]
Step 4: Find the median vector:
\[
\vec{AM}=\frac{1}{2}(2,\,-2,\,8)=(1,\,-1,\,4)
\]
Step 5: Length of the median:
\[
|\vec{AM}|=\sqrt{1^2+(-1)^2+4^2}
=\sqrt{1+1+16}
=\sqrt{18}
\]