Step 1: Identify the general term of the series. The series is of the form: \[ S = \frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \dots, \] where the general term can be written as: \[ T_r = \frac{2r}{(2r+1)!}. \] This is a series involving terms that are related to the exponential series, particularly the series for \( e^x \).
Step 2: Recognize the sum. This series can be related to an exponential series and converges to a known value. By analyzing the sum and recognizing the pattern, we find that it evaluates to: \[ c^{-1}. \] Thus, the correct answer is: \[ \boxed{c^{-1}}. \]
Let A be the set of 30 students of class XII in a school. Let f : A -> N, N is a set of natural numbers such that function f(x) = Roll Number of student x.
On the basis of the given information, answer the followingIs \( f \) a bijective function?
Five friends A, B, C, D, and E are sitting in a row facing north, but not necessarily in the same order:
B is to the immediate left of C
E is not at any of the ends
D is to the right of E but not next to C
A is at one of the ends
Who is sitting in the middle?