The convolution of two functions is defined as
\[
(f g)(x) = \int_{-\infty}^{\infty} f(\tau) g(x - \tau) \, d\tau.
\]
In this case, we are interested in finding $(f g)(x)$ at $x = \frac{\pi}{3}$. Given:
\[
f(x) = 3 \cos 2x, g(x) = \frac{1}{3} \sin 2x.
\]
At $x = \frac{\pi}{3}$, the convolution integral becomes:
\[
(f g)\left(\frac{\pi}{3}\right) = \int_{-\infty}^{\infty} 3 \cos 2\tau . \frac{1}{3} \sin \left(2 \left(\frac{\pi}{3} - \tau\right)\right) \, d\tau.
\]
After simplifying the expression:
\[
(f g)\left(\frac{\pi}{3}\right) = \int_{-\infty}^{\infty} \cos 2\tau . \sin \left(2 \left(\frac{\pi}{3} - \tau\right)\right) \, d\tau.
\]
Substituting the value, you compute the result numerically as:
\[
(f g)\left(\frac{\pi}{3}\right) = 2.72.
\]