Step 1: Simplify the expression for small \( n \).
For large \( n \), \( \frac{1}{n} \) becomes small, so we can use the approximations:
\[
e^{x} - 1 \approx x \quad \text{for small } x,
\]
\[
\sin x \approx x \quad \text{and} \quad \cos x \approx 1 \quad \text{for small } x.
\]
Substituting these approximations into the given limit expression, we get:
\[
e^{\frac{1}{2n}} - 1 \approx \frac{1}{2n}, \quad \sin \frac{1}{2n} \approx \frac{1}{2n}, \quad \cos \frac{1}{2n} \approx 1.
\]
Thus, the limit simplifies to:
\[
\lim_{n \to \infty} 8n \left( \frac{1}{2n} \left( \frac{1}{2n} + 1 \right) \right) = \lim_{n \to \infty} 8n \cdot \frac{1}{2n} \cdot \left( \frac{1}{2n} + 1 \right).
\]
Step 2: Evaluate the limit.
Now simplify the expression:
\[
8n \cdot \frac{1}{2n} \cdot \left( \frac{1}{2n} + 1 \right) = 4 \left( \frac{1}{2n} + 1 \right) = 4 \left( 0 + 1 \right) = 4.
\]
Thus, the value of the limit is 4.
Final Answer:
\[
\boxed{4}.
\]