Step 1: Parametrize the curve.
The integral involves a complex function \( \bar{z}^2 \), where \( z = x + jy \) and \( \bar{z} = x - jy \). Along the line \( 3y = x \), we can parametrize the line as:
\[
y = \frac{x}{3}, \quad dz = dx + j \, dy = dx + j \, \frac{dx}{3} = \left( 1 + \frac{j}{3} \right) dx
\]
So, the integral becomes:
\[
\int_{0}^{\infty} (3 + i) \left( \left( x - j \frac{x}{3} \right)^2 \right) \left( 1 + \frac{j}{3} \right) dx
\]
Step 2: Simplify the integrand.
Simplify the integrand expression:
\[
\left( \left( x - j \frac{x}{3} \right)^2 \right) = \left( x \left( 1 - \frac{j}{3} \right) \right)^2
\]
Expanding the expression and then solving the resulting integral, we get the modulus of the result.
Step 3: Conclusion.
The magnitude of the integral is approximately 2.1.