The value of the integral:
\[ \oint_C \frac{z^3 - z}{(z - z_0)^3} \, dz \] where \( z_0 \) is outside the closed curve \( C \) described in the positive sense, is:
Match List-I with List-II and choose the correct option:
LIST-I (Function) | LIST-II (Value) |
---|---|
(A) \( \int_{\gamma} \frac{1}{z-a} \, dz \), where \( \gamma: |z-a|=r, r > 0 \) | (III) \( 2i\pi \) |
(B) \( \int_{\gamma} \frac{z+2}{z} \, dz \), where \( \gamma: z = 2e^{it}, 0 \le t \le \pi \) | (IV) \( i\pi \) |
(C) \( \int_{\gamma} \frac{e^{2z}}{(z-1)(z-2)} \, dz \), where \( \gamma: |z|=3 \) | (II) \( 2i\pi(e^4 - e^2) \) |
(D) \( \int_{\gamma} \frac{z^2 - z + 1}{2(z-1)} \, dz \), where \( \gamma: |z|=2 \) | (I) \( -4 + 2i\pi \) |
Choose the correct answer from the options given below:
In C language, mat[i][j] is equivalent to: (where mat[i][j] is a two-dimensional array)
Suppose a minimum spanning tree is to be generated for a graph whose edge weights are given below. Identify the graph which represents a valid minimum spanning tree?
\[\begin{array}{|c|c|}\hline \text{Edges through Vertex points} & \text{Weight of the corresponding Edge} \\ \hline (1,2) & 11 \\ \hline (3,6) & 14 \\ \hline (4,6) & 21 \\ \hline (2,6) & 24 \\ \hline (1,4) & 31 \\ \hline (3,5) & 36 \\ \hline \end{array}\]
Choose the correct answer from the options given below:
Match LIST-I with LIST-II
Choose the correct answer from the options given below:
Consider the following set of processes, assumed to have arrived at time 0 in the order P1, P2, P3, P4, and P5, with the given length of the CPU burst (in milliseconds) and their priority:
\[\begin{array}{|c|c|c|}\hline \text{Process} & \text{Burst Time (ms)} & \text{Priority} \\ \hline \text{P1} & 10 & 3 \\ \hline \text{P2} & 1 & 1 \\ \hline \text{P3} & 4 & 4 \\ \hline \text{P4} & 1 & 2 \\ \hline \text{P5} & 5 & 5 \\ \hline \end{array}\]
Using priority scheduling (where priority 1 denotes the highest priority and priority 5 denotes the lowest priority), find the average waiting time.