The value of the integral:
\[ \oint_C \frac{z^3 - z}{(z - z_0)^3} \, dz \] where \( z_0 \) is outside the closed curve \( C \) described in the positive sense, is:
Match List-I with List-II and choose the correct option:
| LIST-I (Function) | LIST-II (Value) |
|---|---|
| (A) \( \int_{\gamma} \frac{1}{z-a} \, dz \), where \( \gamma: |z-a|=r, r > 0 \) | (III) \( 2i\pi \) |
| (B) \( \int_{\gamma} \frac{z+2}{z} \, dz \), where \( \gamma: z = 2e^{it}, 0 \le t \le \pi \) | (IV) \( i\pi \) |
| (C) \( \int_{\gamma} \frac{e^{2z}}{(z-1)(z-2)} \, dz \), where \( \gamma: |z|=3 \) | (II) \( 2i\pi(e^4 - e^2) \) |
| (D) \( \int_{\gamma} \frac{z^2 - z + 1}{2(z-1)} \, dz \), where \( \gamma: |z|=2 \) | (I) \( -4 + 2i\pi \) |
Choose the correct answer from the options given below:


