Question:

The value of $ \int{\frac{2+\sin x}{1+\cos x}}\,{{e}^{x/2}}dx $ is

Updated On: Jun 23, 2024
  • $ 2.{{e}^{x/2}}\,\tan \frac{x}{2}+C $
  • $ {{e}^{x/2}}\,\tan \,x+C $
  • $ \frac{1}{2}{{e}^{x/2}}\,\sin x+C $
  • $ \frac{1}{2}\,\,{{e}^{x/2}}\,\sin \frac{x}{2}+C $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let $ l=\int{\frac{2+\sin x}{1+\cos x}}.\,\,{{e}^{x/2}}\,dx $
$ \Rightarrow $ $ l=\int{\frac{2+\frac{2\,\tan \,x/2}{1+{{\tan }^{2}}x/2}}{1+\frac{1-{{\tan }^{2}}x/2}{1+{{\tan }^{2}}x/2}}}\,.\,\,{{e}^{-x/2}}dx $
$ \Rightarrow $ $ l=\frac{2{{\tan }^{2}}\frac{x}{2}+2+2\tan \frac{x}{2}}{1+{{\tan }^{2}}\frac{x}{2}-{{\tan }^{2}}\frac{x}{2}+1}\,\,.\,{{e}^{x/2}}\,dx $
$ \Rightarrow $ $ l=2\int{\frac{{{\tan }^{2}}\frac{x}{2}+\tan \frac{x}{2}+1}{2}}.{{e}^{x/2}}\,\,dx $
$ \Rightarrow $ $ l=\int{{{\tan }^{2}}\frac{x}{2}.{{e}^{x/2}}dx+\int{\tan \frac{x}{2}.{{e}^{x/2}}\,dx}} $
$ +\int{{{e}^{x/2}}\,\,dx} $
$ \Rightarrow $ $ l=\int{\underset{II}{\mathop{{{\sec }^{2}}}}\,}\,x/2.{{e}^{x/2}}\,dx $
$ -\int{{{e}^{x/2}}\,dx+\int{\tan \frac{x}{2}.{{e}^{x/2}}\,dx+\int{{{e}^{x/2}}\,dx}}} $
$ \Rightarrow $ $ l=2{{e}^{x/2}}.\tan \frac{x}{2}-\int{\frac{1}{2}{{e}^{x/2}}.\tan \frac{x}{2}.2dx} $
$ +\int{\tan \,\frac{x}{2}.\,{{e}^{x/2}}\,dx+C} $
$ \Rightarrow $ $ l=2{{e}^{x/2}}.\tan \frac{x}{2}-\int{{{e}^{x/2}}.\tan \frac{x}{2}\,dx} $
$ +\int{{{e}^{x/2}}.\tan \frac{x}{2}dx+C} $
$ \Rightarrow $ $ l=2{{e}^{x/2}}.\tan \frac{x}{2}+C $
Was this answer helpful?
0
0

Top Questions on Methods of Integration

View More Questions

Concepts Used:

Methods of Integration

Given below is the list of the different methods of integration that are useful in simplifying integration problems:

Integration by Parts:

 If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:

∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C

Here f(x) is the first function and g(x) is the second function.

Method of Integration Using Partial Fractions:

The formula to integrate rational functions of the form f(x)/g(x) is:

∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx

where

f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and

g(x) = q(x).s(x)

Integration by Substitution Method

Hence the formula for integration using the substitution method becomes:

∫g(f(x)) dx = ∫g(u)/h(u) du

Integration by Decomposition

Reverse Chain Rule

This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,

∫g'(f(x)) f'(x) dx = g(f(x)) + C

Integration Using Trigonometric Identities