Step 1: Derive the optimal condition.
The marginal utilities are:
\[
MU_1 = 1, \quad MU_2 = \frac{1}{\sqrt{x_2}}.
\]
At optimum,
\[
\frac{MU_1}{p_1} = \frac{MU_2}{p_2} \Rightarrow \frac{1}{p_1} = \frac{1/\sqrt{x_2}}{p_2} \Rightarrow \sqrt{x_2} = \frac{p_2}{p_1}.
\]
Step 2: Use the given initial condition.
Given optimal bundle $(x_1, x_2) = (10, 10)$, let prices be $(p_1, p_2)$ and income be $m$.
From budget constraint:
\[
p_1x_1 + p_2x_2 = m \Rightarrow 10p_1 + 10p_2 = m.
\]
Step 3: Substitute $\sqrt{x_2 = \frac{p_2}{p_1}$ at optimum.}
From $x_2 = 10$,
\[
\sqrt{10} = \frac{p_2}{p_1} \Rightarrow p_2 = p_1\sqrt{10}.
\]
Then,
\[
m = 10p_1 + 10p_1\sqrt{10} = 10p_1(1 + \sqrt{10}).
\]
Step 4: When income increases by 50%.
New income $m' = 1.5m = 15p_1(1 + \sqrt{10})$.
At new optimum (same prices),
\[
p_1x_1' + p_2x_2' = 1.5m.
\]
Substituting $p_2 = p_1\sqrt{10}$ and $\sqrt{x_2'} = \frac{p_2}{p_1} = \sqrt{10}$ gives same ratio of marginal utilities.
Budget expands proportionally → $x_1'$ and $x_2'$ scale by 1.5.
Step 5: Compute new $x_2$.
\[
x_2' = 1.5 \times 10 = 15.
\]
Thus, new $x_2 = 15$.
Step 6: Conclusion.
\[
\boxed{x_2' = 15.}
\]