The surface equation is:
\[
X^2 + Y^2 + Z^2 - 48 = 0.
\]
To find the unit normal vector, we take the gradient of the surface equation. The gradient \( \nabla f \) is:
\[
\nabla f = \left( \frac{\partial}{\partial X}(X^2 + Y^2 + Z^2 - 48), \frac{\partial}{\partial Y}(X^2 + Y^2 + Z^2 - 48), \frac{\partial}{\partial Z}(X^2 + Y^2 + Z^2 - 48) \right)
\]
\[
\nabla f = (2X, 2Y, 2Z).
\]
At the point (4, 4, 4), the gradient is:
\[
\nabla f = (8, 8, 8).
\]
The unit normal vector is given by normalizing the gradient:
\[
\text{Unit normal vector} = \frac{\nabla f}{|\nabla f|} = \frac{(8, 8, 8)}{\sqrt{8^2 + 8^2 + 8^2}} = \frac{(8, 8, 8)}{\sqrt{192}} = \frac{(8, 8, 8)}{8\sqrt{3}} = \frac{1}{\sqrt{3}} (1, 1, 1).
\]
Final Answer: \( \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \)