Given:
- Total magnification: \( M = 20 \)
- Eyepiece magnification: \( M_e = 5 \)
- Length of microscope: \( L = 14\,\text{cm} \)
- Least distance of distinct vision: \( D = 25\,\text{cm} \)
Step 1: Objective magnification
\[
M = M_o \cdot M_e \Rightarrow M_o = \frac{M}{M_e} = \frac{20}{5} = 4
\]
Step 2: Formula for objective magnification:
\[
M_o = \frac{L - f_e}{f_o} \Rightarrow 4 = \frac{14 - f_e}{f_o} \quad \cdots (1)
\]
Step 3: Formula for eyepiece magnification (for relaxed eye):
\[
M_e = 1 + \frac{D}{f_e} \Rightarrow 5 = 1 + \frac{25}{f_e}
\Rightarrow \frac{25}{f_e} = 4 \Rightarrow f_e = \frac{25}{4} = 6.25\,\text{cm}
\]
Step 4: Substitute \( f_e \) in (1):
\[
4 = \frac{14 - 6.25}{f_o} \Rightarrow 4 = \frac{7.75}{f_o}
\Rightarrow f_o = \frac{7.75}{4} = 1.9375\,\text{cm}
\]
% Final Answer Statement
Answer:
- Focal length of objective \( f_o = 1.9375\,\text{cm} \)
- Focal length of eyepiece \( f_e = 6.25\,\text{cm} \)