Step 1: Apply Gauss’s law in differential form.
According to Gauss’s law,
\[
\rho = \varepsilon_0 (\nabla \cdot \vec{E}).
\]
Step 2: Compute divergence of the given electric field.
Given \( \vec{E} = K(4x^2 \hat{i} + 3y \hat{j}) \),
\[
\nabla \cdot \vec{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} = K(8x + 3).
\]
Step 3: Determine total charge in the cube.
Total charge \( Q = \int \rho\, dV = \varepsilon_0 \int (\nabla \cdot \vec{E})\, dV. \)
Since the cube extends from \( x = 0 \) to \( 1 \), \( y = 0 \) to \( 1 \), and \( z = 0 \) to \( 1 \):
\[
Q = \varepsilon_0 K \int_0^1 \int_0^1 \int_0^1 (8x + 3)\, dx\, dy\, dz.
\]
Step 4: Integrate.
\[
Q = \varepsilon_0 K \left[ 4x^2 + 3x \right]_0^1 = \varepsilon_0 K (4 + 3) = 7K\varepsilon_0.
\]
Step 5: Final Answer.
Total charge within the cube is \( 7K\varepsilon_0. \)