Step 1: Understand Heap Construction.
To build a heap, the most efficient method involves starting from the last internal node and applying the heapify operation, which takes \( O(\log n) \) time. The heapify operation is applied to each node, and since there are \( n \) nodes, the total time complexity is \( O(n \log n) \).
Step 2: Conclusion.
Thus, the correct time complexity for building a heap of \( n \) elements is \( O(n \log n) \).
In C language, mat[i][j] is equivalent to: (where mat[i][j] is a two-dimensional array)
Suppose a minimum spanning tree is to be generated for a graph whose edge weights are given below. Identify the graph which represents a valid minimum spanning tree?
\[\begin{array}{|c|c|}\hline \text{Edges through Vertex points} & \text{Weight of the corresponding Edge} \\ \hline (1,2) & 11 \\ \hline (3,6) & 14 \\ \hline (4,6) & 21 \\ \hline (2,6) & 24 \\ \hline (1,4) & 31 \\ \hline (3,5) & 36 \\ \hline \end{array}\]
Choose the correct answer from the options given below:
Match LIST-I with LIST-II
Choose the correct answer from the options given below:
Consider the following set of processes, assumed to have arrived at time 0 in the order P1, P2, P3, P4, and P5, with the given length of the CPU burst (in milliseconds) and their priority:
\[\begin{array}{|c|c|c|}\hline \text{Process} & \text{Burst Time (ms)} & \text{Priority} \\ \hline \text{P1} & 10 & 3 \\ \hline \text{P2} & 1 & 1 \\ \hline \text{P3} & 4 & 4 \\ \hline \text{P4} & 1 & 2 \\ \hline \text{P5} & 5 & 5 \\ \hline \end{array}\]
Using priority scheduling (where priority 1 denotes the highest priority and priority 5 denotes the lowest priority), find the average waiting time.