For FCC crystals, allowed planes satisfy:
\[
h^2 + k^2 + l^2 = 3,\; 4,\; 8,\; 11,\; 12,\ldots
\]
The third peak corresponds to the third allowed value:
\[
h^2 + k^2 + l^2 = 8
\]
Using Bragg’s law for first-order reflection \((n=1)\):
\[
n\lambda = 2d\sin\theta
\]
Given \(2\theta = 45^\circ \Rightarrow \theta = 22.5^\circ\).
Thus:
\[
d = \frac{\lambda}{2\sin\theta}
\]
Substitute:
\[
d = \frac{1.54}{2\sin 22.5^\circ}
\]
\[
\sin 22.5^\circ = 0.3827
\]
\[
d = \frac{1.54}{2 \times 0.3827}
= \frac{1.54}{0.7654}
= 2.01\ \text{\AA}
\]
For cubic crystals:
\[
d = \frac{a}{\sqrt{h^2+k^2+l^2}}
\]
Here:
\[
h^2 + k^2 + l^2 = 8
\]
Thus lattice parameter:
\[
a = d\sqrt{8} = 2.01 \times 2.828
\]
\[
a = 5.69\ \text{\AA}
\]
Rounded to two decimals:
\[
a = 5.69\ \text{\AA}
\]