Step 1: Recall condition for maximum load.
At maximum load (on engineering stress-strain curve), Considère criterion applies:
\[
\frac{d\sigma}{d\varepsilon} = \sigma
\]
Step 2: Differentiate given stress-strain relation.
\[
\sigma = 500 \varepsilon^{0.15}
\]
\[
\frac{d\sigma}{d\varepsilon} = 500 \times 0.15 \varepsilon^{0.15 - 1}
= 75 \varepsilon^{-0.85}
\]
Step 3: Apply maximum load condition.
\[
\frac{d\sigma}{d\varepsilon} = \sigma
\]
\[
75 \varepsilon^{-0.85} = 500 \varepsilon^{0.15}
\]
\[
\Rightarrow \frac{75}{500} = \varepsilon^{0.15 + 0.85} = \varepsilon^{1.0}
\]
\[
\varepsilon = 0.15
\]
Step 4: Compute work-hardening rate.
\[
\frac{d\sigma}{d\varepsilon} = 75 \varepsilon^{-0.85}
= 75 \times (0.15)^{-0.85}
\]
\[
(0.15)^{-0.85} \approx 1.0
\]
Thus,
\[
\frac{d\sigma}{d\varepsilon} \approx 75 \ \text{MPa}
\]
Final Answer:
\[
\boxed{75 \ \text{MPa}}
\]