We solve the absolute value equation by considering different intervals of \(x\):
Step 1: Case 1 (\(x \geq 8\))
\[
|x+7| = x+7, |x-8| = x-8
\]
\[
(x+7) + (x-8) = 16 ⇒ 2x - 1 = 16 ⇒ 2x = 17 ⇒ x = \tfrac{17}{2} = 8.5
\]
This satisfies \(x \geq 8\).
Step 2: Case 2 (\(-7 \leq x<8\))
\[
|x+7| = x+7, |x-8| = -(x-8) = -x+8
\]
\[
(x+7) + (-x+8) = 16 ⇒ 15 = 16
\]
Contradiction. No solution.
Step 3: Case 3 (\(x<-7\))
\[
|x+7| = -(x+7) = -x-7, |x-8| = -(x-8) = -x+8
\]
\[
(-x-7) + (-x+8) = 16 ⇒ -2x+1 = 16 ⇒ -2x = 15 ⇒ x = -7.5
\]
This satisfies \(x<-7\).
Step 4: Sum of solutions
\[
x = 8.5 \text{and} x = -7.5
\]
\[
\text{Sum} = 8.5 + (-7.5) = 1
\]
\[
\boxed{1}
\]