The given sequence is:
\[
-100, -95, -90, \dots, 110, 115, 120
\]
Step 1: Identify sequence type.
This is an Arithmetic Progression (AP) with:
\[
a = -100, \quad d = 5, \quad l = 120
\]
where $a$ = first term, $d$ = common difference, $l$ = last term.
Step 2: Find number of terms ($n$).
The general formula of the $n$-th term of an AP is:
\[
a_n = a + (n-1)d
\]
Setting $a_n = 120$:
\[
120 = -100 + (n-1)(5)
\]
\[
120 + 100 = (n-1)(5)
\]
\[
220 = 5(n-1)
\]
\[
n-1 = 44 \quad \Rightarrow \quad n = 45
\]
Step 3: Use sum formula.
Sum of an AP:
\[
S_n = \frac{n}{2}(a + l)
\]
Substitute values:
\[
S_{45} = \frac{45}{2}(-100 + 120)
\]
\[
S_{45} = \frac{45}{2}(20)
\]
\[
S_{45} = 45 \times 10 = 450
\]
Final Answer:
\[
\boxed{\text{D. 450}}
\]