We are given:
The side of the square is \( 14 \, \text{cm} \)
A circle is inscribed inside the square
Step 1: Area of the square
\[
\text{Area}_{\text{square}} = 14 \times 14 = 196 \, \text{cm}^2
\]
Step 2: Radius of the inscribed circle
\[
\text{Radius } r = \frac{14}{2} = 7 \, \text{cm}
\]
Step 3: Area of the circle
\[
\text{Area}_{\text{circle}} = \pi r^2 = \pi \times 7^2 = 154 \, \text{cm}^2 \quad (\text{Use } \pi \approx 22/7)
\]
Step 4: Area of the shaded region
\[
\text{Shaded} = \text{Area}_{\text{square}} - \text{Area}_{\text{circle}} = 196 - 154 = \boxed{144 \, \text{cm}^2}
\]