Step 1: Use formula for shortest distance between skew lines.
For lines:
\[
\vec{r}=\vec{a_1}+\lambda\vec{b_1},\quad \vec{r}=\vec{a_2}+\mu\vec{b_2}
\]
Shortest distance:
\[
d=\frac{|(\vec{a_2}-\vec{a_1})\cdot(\vec{b_1}\times\vec{b_2})|}{|\vec{b_1}\times\vec{b_2}|}
\]
Step 2: Identify vectors.
\[
\vec{a_1}=(6,2,2),\quad \vec{a_2}=(-4,0,-1)
\]
\[
\vec{b_1}=(1,-2,2),\quad \vec{b_2}=(3,-2,-2)
\]
Step 3: Compute \(\vec{a_2}-\vec{a_1}\).
\[
\vec{a_2}-\vec{a_1}=(-10,-2,-3)
\]
Step 4: Compute cross product \(\vec{b_1}\times\vec{b_2}\).
\[
\vec{b_1}\times\vec{b_2}=
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}\\
1 & -2 & 2\\
3 & -2 & -2
\end{vmatrix}
\]
\[
= \hat{i}[(-2)(-2)-2(-2)] - \hat{j}[1(-2)-2(3)] + \hat{k}[1(-2)-(-2)(3)]
\]
\[
= \hat{i}(4+4) - \hat{j}(-2-6) + \hat{k}(-2+6)
\]
\[
= (8,8,4)
\]
Step 5: Compute numerator.
\[
|(-10,-2,-3)\cdot(8,8,4)|
= |-80-16-12|
= | -108|=108
\]
Step 6: Compute denominator.
\[
|\vec{b_1}\times\vec{b_2}|=\sqrt{8^2+8^2+4^2}
=\sqrt{64+64+16}
=\sqrt{144}=12
\]
Step 7: Distance.
\[
d=\frac{108}{12}=9
\]
Final Answer:
\[
\boxed{9}
\]