A “scaled + rotated’’ transform has the form \( T = sR \), where \( R \) is a \( 2 \times 2 \) rotation matrix and \( s>0 \) is a scalar.
Such a transform preserves the angle between vectors and scales all lengths by the same factor \( s \); hence for input vectors
\( \mathbf{u} = [1, 2] \) and \( \mathbf{v} = [-3, 4] \):
\[
\frac{\|\mathbf{v}'\|}{\|\mathbf{u}'\|} = \frac{s\|\mathbf{v}\|}{s\|\mathbf{u}\|} = \frac{\|\mathbf{v}\|}{\|\mathbf{u}\|}
= \frac{5}{\sqrt{5}} = \sqrt{5}.
\]
Check option (A): \( \|\,[\!-1, 3]\,\| = \sqrt{10} \) and \( \|\,[\!-7, 1]\,\| = \sqrt{50} \), so the ratio is
\( \sqrt{50}/\sqrt{10} = \sqrt{5} \) — matches.
Also, the dot product must scale by \( s^2 \): \( \mathbf{u} \cdot \mathbf{v} = 5 \).
With \( s = \|\,[\!-1, 3]\,\| / \|\mathbf{u}\| = \sqrt{10}/\sqrt{5} = \sqrt{2} \), we get
\( s^2(\mathbf{u} \cdot \mathbf{v}) = 2 \times 5 = 10 \), and indeed
\([ \!-1, 3 ] \cdot [ \!-7, 1 ] = 7 + 3 = 10 \).
Options (B)–(D) fail the constant-length-ratio test, so (A) is the only valid pair.