To solve this problem, we need to determine the Region of Convergence (ROC) of the Z-transform for the given signal \( x(n) = \delta(n - k) \), where \( k > 0 \).
- Z-transform: The Z-transform of a discrete-time signal \( x(n) \) is given by:
\[ X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n} \]
- Delta function \( \delta(n - k) \): The delta function \( \delta(n - k) \) is defined as:
\[ \delta(n - k) = \begin{cases} 1 & \text{if } n = k \\ 0 & \text{otherwise} \end{cases} \]
For the signal \( x(n) = \delta(n - k) \), the Z-transform is:
\[ X(z) = z^{-k} \]
The ROC of the Z-transform depends on the nature of the signal. For the delta function \( \delta(n - k) \), the Z-transform is a simple power of \( z^{-k} \), and this function is valid for the entire \( z \)-plane except at \( z = 0 \) (where it would lead to an undefined result for \( z^{-k} \)).
The ROC of the signal \( x(n) = \delta(n - k), \, k > 0 \) is Entire z-plane, except at \( z = 0 \).