To solve this problem, we need to determine the Region of Convergence (ROC) of the Z-transform for the given signal \( x(n) = \delta(n - k) \), where \( k > 0 \).
- Z-transform: The Z-transform of a discrete-time signal \( x(n) \) is given by:
\[ X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n} \]
- Delta function \( \delta(n - k) \): The delta function \( \delta(n - k) \) is defined as:
\[ \delta(n - k) = \begin{cases} 1 & \text{if } n = k \\ 0 & \text{otherwise} \end{cases} \]
For the signal \( x(n) = \delta(n - k) \), the Z-transform is:
\[ X(z) = z^{-k} \]
The ROC of the Z-transform depends on the nature of the signal. For the delta function \( \delta(n - k) \), the Z-transform is a simple power of \( z^{-k} \), and this function is valid for the entire \( z \)-plane except at \( z = 0 \) (where it would lead to an undefined result for \( z^{-k} \)).
The ROC of the signal \( x(n) = \delta(n - k), \, k > 0 \) is Entire z-plane, except at \( z = 0 \).
Signals and their Fourier Transforms are given in the table below. Match LIST-I with LIST-II and choose the correct answer.
| LIST-I | LIST-II |
|---|---|
| A. \( e^{-at}u(t), a>0 \) | I. \( \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \) |
| B. \( \cos \omega_0 t \) | II. \( \frac{1}{j\omega + a} \) |
| C. \( \sin \omega_0 t \) | III. \( \frac{1}{(j\omega + a)^2} \) |
| D. \( te^{-at}u(t), a>0 \) | IV. \( -j\pi[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \) |