Concept:
For a sinusoidal alternating voltage:
\[
V = V_0 \sin \omega t
\]
Key results:
RMS value:
\[
V_{\text{rms}} = \frac{V_0}{\sqrt{2}}
\]
Average value over a complete cycle:
\[
V_{\text{avg}} = 0
\]
Step 1: RMS value.
The RMS value is defined as:
\[
V_{\text{rms}} = \sqrt{\frac{1}{T}\int_0^T V^2 dt}
\]
For sine wave:
\[
V_{\text{rms}} = \frac{V_0}{\sqrt{2}}
\]
Step 2: Average over a full cycle.
Over one full cycle:
Positive half cancels negative half
Net average becomes zero
\[
V_{\text{avg}} = 0
\]
Step 3: Conclusion.
Thus:
\[
(V_{\text{rms}}, V_{\text{avg}}) = \left(\frac{V_0}{\sqrt{2}}, 0\right)
\]