All prime numbers greater than 3 can be expressed in one of two forms:
\( p = 6k + 1 \) or \( p = 6k - 1 \)
(where \( k \) is a positive integer)
Case 1: \( p = 6k + 1 \)
\[ \begin{align*} p^2 &= (6k + 1)^2 \\ &= 36k^2 + 12k + 1 \\ &= 6(6k^2 + 2k) + 1 \end{align*} \]
When divided by 6, the remainder is 1.
Case 2: \( p = 6k - 1 \)
\[ \begin{align*} p^2 &= (6k - 1)^2 \\ &= 36k^2 - 12k + 1 \\ &= 6(6k^2 - 2k) + 1 \end{align*} \]
When divided by 6, the remainder is again 1.
Verification with Examples
\( 5^2 = 25 \quad \Rightarrow \quad 25 \div 6 \) leaves remainder 1
\( 7^2 = 49 \quad \Rightarrow \quad 49 \div 6 \) leaves remainder 1
\( 11^2 = 121 \quad \Rightarrow \quad 121 \div 6 \) leaves remainder 1
Conclusion
For any prime number \( p > 3 \), \( p^2 \equiv 1 \pmod{6} \).
The correct answer is (1) 1.