Given the equation: \[ 2^{6x} + 2^{3x} \cdot 2^2 - 21 = 0 \]
Let us make a substitution: \[ \text{Let } 2^{3x} = y \] Then the equation becomes: \[ y^2 + 4y - 21 = 0 \]
Now solve this quadratic equation: \[ y^2 + 4y - 21 = 0 \Rightarrow (y - 3)(y + 7) = 0 \Rightarrow y = 3 \text{ or } y = -7 \]
But since \( y = 2^{3x} \), and exponential expressions are always positive: \[ 2^{3x} = 3 \text{ or } 2^{3x} = -7 \quad (\text{Not valid since } 2^{3x} > 0) \]
So only: \[ 2^{3x} = 3 \Rightarrow 3x = \log_2 3 \Rightarrow x = \frac{\log_2 3}{3} \]
\[ \boxed{x = \frac{\log_2 3}{3}} \]
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: