For one-way ranging (GNSS code measurement),
\[
\Delta R = c\,\Delta t.
\]
Given desired range accuracy $\,\Delta R = 1\;\text{cm} = 10^{-2}\,$m,
\[
\Delta t = \frac{\Delta R}{c}=\frac{10^{-2}}{3\times 10^8}
=3.33\ldots\times 10^{-11}\ \text{s}.
\]
Thus $x=11$. (Sanity check: for $\Delta t=1\,\mu$s, $\Delta R=c\Delta t=3\times 10^8\times 10^{-6}=300$ m, as stated.)