Step 1: Radioactive decay relation.
The number of parent nuclei remaining after time \(t\) is given by: \[ N = N_0 e^{-\lambda t} \] and the number of daughter nuclei formed is: \[ N_D = N_0 - N = N_0 (1 - e^{-\lambda t}) \] Given isotopic ratio: \[ \frac{N}{N_D} = 50 \Rightarrow \frac{e^{-\lambda t}}{1 - e^{-\lambda t}} = 50 \]
Step 2: Solve for decay constant term.
\[ e^{-\lambda t} = 50 - 50 e^{-\lambda t} \Rightarrow 51 e^{-\lambda t} = 50 \Rightarrow e^{-\lambda t} = \frac{50}{51} \]
Step 3: Decay constant.
\[ \lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{1.25 \times 10^9} = 5.544 \times 10^{-10}\, \text{yr}^{-1} \]
Step 4: Substitute to find \(t\).
\[ -\lambda t = \ln{\frac{50}{51}} = -0.0198 \Rightarrow t = \frac{0.0198}{5.544 \times 10^{-10}} = 3.57 \times 10^7\, \text{years} \] \[ m = 3.57 \]
Step 5: Conclusion.
Hence, the age of the rock is \(3.57 \times 10^7\, \text{years}\), i.e., \(m = 3.57.\)
The half-life of a radioactive nucleus is 5 years. The fraction of the original sample that would decay in 15 years is:
