With a current source feeding the parallel $R$–$L$, KCL at the node gives
\[
I_0 = i_R + i_L = \frac{v}{R} + i_L,\qquad v=L\,\frac{di_L}{dt}.
\]
Hence
\[
\frac{di_L}{dt}+\frac{R}{L}\,i_L=\frac{R}{L}\,I_0
\Rightarrow
i_L(t)=I_0+\big(i_L(0^+)-I_0\big)e^{-t/\tau},
\]
where $\tau=\dfrac{L}{R}=\dfrac{1\,\text{mH}}{10\,\text{k}\Omega}=0.1\,\mu\text{s}$ and $i_L(0^+)=I_0/5$.
Set $i_L(t)=0.99\,I_0$:
\[
0.99I_0=I_0-\frac{4}{5}I_0\,e^{-t/\tau}
\ \Rightarrow\ e^{-t/\tau}=0.0125
\ \Rightarrow\ t=\tau\ln(80)=0.1\,\mu\text{s}\times 4.382=0.438\,\mu\text{s}\approx 0.44\,\mu\text{s}.
\]