$O _{3} {<=>[{\text { Fast }}]} O _{2}+ O$
$O + O _{3} {->[{\text { Slow }}]} 2 O _{2}$
From equation (i)
$K_{c}=\frac{\left[ O _{2}\right][ O ]}{\left[ O _{3}\right]}$
or $[ O ] =\frac{K_{ c }\left[ O _{3}\right]}{\left[ O _{2}\right]} $
Rate $=k\left[ O _{3}\right][ O ]$
$=k\left[ O _{3}\right] . \frac{K_{c}\left[ O _{3}\right]}{\left[ O _{2}\right]} $
$=k^{'}\left[ O _{3}\right]^{2}\left[ O _{2}\right]^{-1}$