The Laspeyre's price index is calculated using the formula:
\( I_L = \frac{\sum(P_1 \cdot Q_0)}{\sum(P_0 \cdot Q_0)} \times 100 \)
where:
- \( P_0 \) = Price in the base year (2006 here)
- \( P_1 \) = Price in the current year (2009 here)
- \( Q_0 \) = Quantity in the base year (2006 here)
Given that \( I_L = 200 \), we use the values for commodities P, Q, and R.
The data is:
- Commodity P: \( P_0 = 100, P_1 = 90, Q_0 = 12 \)
- Commodity Q: \( P_0 = 80, P_1 = x, Q_0 = 8 \)
- Commodity R: \( P_0 = 60, P_1 = 50, Q_0 = 4 \)
Applying the formula:
\( \frac{(90 \times 12) + (x \times 8) + (50 \times 4)}{(100 \times 12) + (80 \times 8) + (60 \times 4)} \times 100 = 200 \)
Simplify each term:
- \( 90 \times 12 = 1080 \)
- \( 50 \times 4 = 200 \)
- \( 100 \times 12 = 1200 \)
- \( 80 \times 8 = 640 \)
- \( 60 \times 4 = 240 \)
Substituting these into the equation gives:
\( \frac{1080 + 8x + 200}{1200 + 640 + 240} \times 100 = 200 \)
Calculating the denominators and numerators:
- Denominator: \( 1200 + 640 + 240 = 2080 \)
- Numerator: \( 1280 + 8x \)
Revisit the price index equation:
\( \frac{1280 + 8x}{2080} \times 100 = 200 \)
Solving for \( x \):
\( \frac{1280 + 8x}{2080} = 2 \)
\( 1280 + 8x = 2 \times 2080 = 4160 \)
Solve for \( x \):
\( 8x = 2880 \)
\( x = \frac{2880}{8} = 360 \)
Thus, the value of \( x \) is 360.