Since,
S.I. \(=\frac{Principal\times Rate\times Time}{100}\)
Therefore, 1200 + 1200\(\times\)7\(\times\)\(\frac{r}{12\times100}=\) Amount (A)
1200 + 7r = A .........(i)
and 1016 + 1016\(\times\)5\(\times\)\(\frac{r}{2}\times\)100 = A
Therefore, 1016 + 25.4r = A ...(ii)
1016 + 25.4r = 1200 + 7r
So,
25.4r - 7r = 1200 - 1016
18.4r = 184
r \(=\frac{184}{18.4}\)
= 10\(\%\) per annum.
So the correct option is (B)