For an Amplitude Modulated (AM) wave, let \(V_{max}\) be the maximum peak amplitude of the modulated wave and \(V_{min}\) be the minimum peak amplitude of the modulated wave.
Given:
The modulation index (\(m\) or \(\mu\)) can be calculated using the formula:
\[ m = \frac{V_{max} - V_{min}}{V_{max} + V_{min}} \]
Substitute the given values:
\[ m = \frac{12\text{V} - 4\text{V}}{12\text{V} + 4\text{V}} = \frac{8\text{V}}{16\text{V}} = \frac{8}{16} = \frac{1}{2} \]
The modulation index is \(\frac{1}{2}\) or 0.5.
Alternatively, let \(V_c\) be the carrier amplitude and \(V_m\) be the message signal amplitude.
\(V_{max} = V_c + V_m = V_c(1+m)\)
\(V_{min} = V_c - V_m = V_c(1-m)\)
Adding these: \(V_{max} + V_{min} = 2V_c\)
12 + 4 = 2V_c \(\Rightarrow\) 16 = 2V_c \(\Rightarrow\) V_c = \(8\text{V}\)
Subtracting these: \(V_{max} - V_{min} = 2V_m\)
12 - 4 = 2V_m \(\Rightarrow\) 8 = 2V_m \(\Rightarrow\) V_m = \(4\text{V}\)
Modulation index \(m = \frac{V_m}{V_c} = \frac{4\text{V}}{8\text{V}} = \frac{1}{2}\).
Final Answer:
\(\frac{1}{2}\)
Match List-I with List-II:
| List-I (Modulation Schemes) | List-II (Wave Expressions) |
|---|---|
| (A) Amplitude Modulation | (I) \( x(t) = A\cos(\omega_c t + k m(t)) \) |
| (B) Phase Modulation | (II) \( x(t) = A\cos(\omega_c t + k \int m(t)dt) \) |
| (C) Frequency Modulation | (III) \( x(t) = A + m(t)\cos(\omega_c t) \) |
| (D) DSB-SC Modulation | (IV) \( x(t) = m(t)\cos(\omega_c t) \) |
Choose the correct answer:
