Question:

The polar form of the complex number z= \(\frac{i-1}{cos[\frac{\pi}{3}]+i sin[\frac{\pi}{3}]}\) is,

Updated On: Jun 22, 2024
  • \(\sqrt2(cos[\frac{\pi}{3}]+i \sin[\frac{\pi}{3}])\)
  • \(\sqrt3(cos[\frac{\pi}{12}]+i \sin[\frac{\pi}{12}])\)
  • \(\sqrt2(cos[\frac{5\pi}{3}]+i \sin[\frac{5\pi}{3}])\)
  • \(\sqrt2(cos[\frac{5\pi}{12}]+i \sin[\frac{5\pi}{12}])\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct option is(D): \(\sqrt2(cos[\frac{5\pi}{12}]+i \sin[\frac{5\pi}{12}])\)
Was this answer helpful?
0
0